Wire-Cell Toolkit Rectangles

Brett Viren

April 24, 2023

Brett Viren

Topics

o Interval trees, sets and maps
@ Boost Implementation

o Extend to 2D: Rectangles

o Application to deghosting

y

Intervals

Consider the 1D number line, either integer/discrete or real/continuous valued.

CERERE R RERERERURE

An interval is some finite, contiguous subset of the number line,
@ Here, confine to the right-open inteval: [2,5).
o 2 isin the interval, 5 is not (ie, just like Python/C++ iterator ranges)

@ [2,5) and [5,7) are not overlapping
April 24,2023 3/14

Interval tree - a binary tree of intervals

For n stored intervals (and m returned), naive operations require at least O(n).
With a tree structure, expect:

creation O(nlogn)
insert/delete O(logn)
memory O(n)
point query O(logn +m)
interval query O(logn)

For brief description of the data structure and algorithms,
https://en.wikipedia.org/wiki/Interval_tree

y T ———

https://en.wikipedia.org/wiki/Interval_tree

Interval set

Adds set-theoretic operations: union (addition), difference (subtraction, symmetric or
asymmetric) and intersection.

Set addition and interval overlaps:
esl = {[1, 4)}
es2 = {[2, 5)}
esl + s2 = {[1, 2), [2, 4), [4, 5)}

I

Interval maps - associate values with intervals.

CERERERERERCRERURE

[{value})

An interval map holds an interval’s value(s) in a set.

I

Interval map: aggregation on overlap

In pseudocode:

interval_map m;

m.add([2,5), v1) -> { [2,5) -> {v1} }
m.add([1,4), v2) -> { [1, 2)->{Vv2},

[2, 4)->{v1,v2},
[4, 5)->{v1} }

y

Boost Interval Container Library (boost: : icl)

e https://www.boost.org/doc/libs/master/libs/icl

@ Supports intervals, interval sets and interval maps.
@ Provides family of free functions and operators.
» creation, set operations, queries, iteration

y T a——

https://www.boost.org/doc/libs/master/libs/icl

boost: :icl interval map example

using key_t = int;

using val_t = double;
using imap_t = boost::icl::interval_map<key_t, val_t >;
using interval_t = boost::icl::interval <key_t >::interval_type;

imap_t m;
m += std:: make_pair(interval_t::right_open(0, 7), 42.0);

auto qi = interval_t::right_open(1, 2);
auto mq = m & qi; // "bitwise and”
for (const auto& [i, s] : mq) {

cout << "in interval " << i << " we have set {";
for (const auto& v : s) { cout << " " << v; }
cout << " }\n";

gy

9/14

Extend interval map to 2D - WireCell: :Rectangles

L1,

disjoin H
S—

(thank herbst luftwm for the artwork)

Brett Viren WCT Rectangles April 24, 2023 10/14

Dimensional hierarchy of interval maps.

Very simple implementation.

using xkey_t S
using ykey_t S
using value_t = ...;

using set_t = std::set<value_t >;

// Intervals along the vertical Y-axis

using ymap_t = boost::icl::interval_map <ykey_t, set_t >;
// Intervals along the horizontal X-axis

using xmap_t = boost::icl::interval_map <xkey_t, ymap_t>;

Essentially, X dimension interval map maps to a Y dimension interval map which

finally maps to a set of values.
Everything else in Rectangles merely provides some syntactic sugar.

T a———

Example - random rectangles

o Initial rectangles: solid color holding
black letter data, eg: [a].

@ 2D overlaps are out outlined
rectangles holding a set of white
letters.

o Central gray square is a query:

X<- [400,600) Y<- [400,600)

X-> [400,501.495) Y-> [400,408.36) {e}
X-> [400,501.495) Y-> [572.966,600) {b}
X-> [501.495,600) Y-> [400,408.36) {e}
X-> [501.495,600) Y-> [572.966,600) {b}

The dimensional hierarchy strategy to extend to 2D results in each X-interval projecting across all
rectangles. This causes segmentation of rectangles which do not overlap in Y with the one providing
the X-interval.

e r——

Cluster Shadows

A Geometric Cluster is a connected component of a b-b graph
e ICluster already has this b-b subgraph embedded
e b-b edges formed between b nodes in neighboring slices which overlap.
@ Todo: form these b-b edges given dead/bad channels
A Blob Shadow (see last presentation)
@ Describes overlap of two blobs in one view.
e Can be wire-type or channel-type shadow.
@ Results in a b-b blob shadow graph, edge is the shadow.
A Cluster Shadow Graph combines tese two b-b graphs
e Makes a g-g graph, each g is “geometric cluster”
e A g holds aRectangles of the cluster for each view

e A g-g edge for any cluster pair with non-zero shadow

e

Application: blob deghosting

A ghost blob truly has no charge and tends to have shadows with real blobs.
Use the Rectangles from Cluster Shadows to find them:

o Iterate over b-b edges of a CS graph.
o Get set-difference and/or set-intersection of the CS Rectangles.

o Compare area or charge*area or charge/area in diff/inter to total.
@ Define selection criteria for ghosts.
» compare against BlobDepoFill true charge blobs
This work is still a big TODO.

T a——r

