Wire-Cell Toolkit Point Cloud

Brett Viren

April 24, 2023

Brett Viren

Topics

Points and point data

Point cloud, point data array and dataset

k-d tree operations

Data representation conversions

WIP: extending point-cloud to point-graph

y

Point

An abstract entity, no intrinsic meaning.

Brett Viren April 24, 2023 3/24

Point data

z We may associate information with a point.

@ shapes: scalar, vector, matrix, tensor
@ numeric types: integer or floating point

» homotypic if non-scalar

I

Data interpretation, eg coordinates

We may interpret specific point data in some way.

@ An ordered set of n coordinates may provide a
position in an n dimensional Cartesian space.

o Interpretation are extrinsic to the point and
the associated data.

id

I

Shared interpretations

Different interpretations of subsets of point data.

e The “x” point-data interpreted as part of a 3D
position may also be used as part of a 2D
position (projected x-u wire view).

e A charge, “qu” may be found with the
projected 2D position and then later used
along with 3D positions.

I

Point cloud

- 0000000 0 0 0

An abstract, ordered collection of N points.
o Well defined ordering of points (but may be arbitrary).

@ An extrinsic point index reflects the ordering.

Point-data array

- Q0 000 000 0 0 0

(12345678910]

Collect all of one type of point data for the points in a point cloud into an array.

@ The point-cloud index also identifies associated point data in the array.
@ Array elements have common data type and shape.

> (here, scalar integers one larger than point index)

Point-cloud dataset

PC:

PC

A

nig"

(=)

)

7

(1.0

1.1

1.2

3.2

4.0

2.5

1.6

7.0

0.8

6.9]

Associate multiple point-data arrays to a point cloud.

e Each array is identified by a “name” in the context of the dataset.

e Heterogeneous type and shape across the arrays, but common length.

Brett Viren

April 24, 2023

9/24

WireCell: :PointCloud

Array model of a point-data array
Dataset model of a point-cloud dataset

Brett Viren

PointCloud: :Array

(12345678910)

Provide type-erased array data wrapper.
» Required to form a heterotypic collection.

Read-only, zero-copy shared or read-write copy of user array.

Supports minimal but efficient set of array operations.
» Essentially only: append (Array) which assures type/shape constraints.

Read-only, zero-copy and typed, full featured wrappers:

» span<T> aflat vector<T> like view of underlying array
» boost::multi_array<T,NDim> full featured multi-dimensional array
operations

Y

PointCloud: :Dataset

(Ll e[]e]o)
[1.0 ll.l |1.2 |3.2 |4.0|2.5|1.6|7A0 IO.BIG.QJ

@ Access an Array by its associated name.

@ Assure array length constraints.
o Implement append (Dataset).

» Assure completeness, shape, type constraints of appended tail dataset.

o Call user-provided callback hooks on successful append ().
» Needed for dynamic k-d tree support (comming up).

@ Retrieve collection of references to Array’s via list-of-names.

R ———

WireCell: :PointCloud code snippet

#include "WireCellUtil/PointCloud.h"
using namespace WireCell :: PointCloud;

Dataset d;

// Add an integer array named "one" of shape (5,)
d.add("one", Array({1,2,3,4,5}));

// Add a double array named "two" of shape (5),)
d.add("two", Array({1.1,2.2,3.3,4.4,5.5}));

auto sel = d.selection ({"two","one"});
const Array& one = sel[1];

assert(sel [0].get().num_elements() == 5);
const auto& one = d.get("one");

Many other ways to make Array and add them to Dataset.

T

Array:: and Dataset: :metadata()

using metadata_t = Configuration;

metadata_t& metadata () ;
const metadata_t& metadata () const;

o TypeisWireCell: :Configuration,
» aka JsonCPP’s Json: :Value.

@ Merely carried and not directly utilized by Array/Dataset.

» Utilized in I/O related conversions (coming up).

@ Users are free to stash their own structured data.

T a——r

Point-cloud position queries

We may interpret certain arrays in a dataset as holding coordinate point data.

o Each array represents a location in a given Cartesian dimension.
» eg "x" array of X-coordinates.

@ Any set of scalar and common numeric type arrays may provide coordinates.
Position queries

knn the k’th nearest neighbors to query position.

radius all point positions within some metric distance to a query position.
Results in two arrays:

index an array of point indices into the original dataset.

distance the metric distance between point and query positions.

T

Metric distance

A distance between two positions in a space requires a metric.
L2 the usual, but squared Cartesian distance
L1 sum of steps, each strictly taken in one dimension
SO2 2D angular distance
SO3 3D angular distance
The query radius and returned distances are expressed in this metric.

e eg, units are [length]? for choice of the L2 metric.

Y ——

WireCell: :KDTree for position queries

e UsesaDataset
@ Provides a thin wrapper around nanoflann

» Simplifies and regularizes nanoflann APL
» Converts complex nanof lann templated types to option variables.

o Common result set type for both knn and radius searches.

Y

WireCell: :KDTree code snippet

#include "WireCellUtil/KDTree.h"
using namespace WireCell :: KDTree;
using namespace WireCell :: PointCloud;
void func () {
Dataset d = ...;
std :: vector <double> query_pos = {1,2,3};

auto qptr = query<double>(d, {"x","y","z"});

size t k = 3;
auto knn = qptr->knn(k, query_pos);

const size_t nfound = knn.index.size ();
for (size_t ifound=0; ifound<nfound; ++ifound) {
cerr << ifound << ":" << " index=" << knn.index[ifound]
<< " distance=" << knn.distance[ifound] << "\n";
}
double rad = 5+units::cmj;
auto radn = qptr->radius(rad+rad, query_pos);

// use radn just like knn....

P

18/24

WireCell: :KDTree: :query<TYPE> ()

For TYPE € {int,float,double}

template <typename Type>

std :: unique_ptr <Query<TYPE>>

query (PointCloud :: Dataset& dataset ,
const PointCloud :: name list_t& selection ,
bool dynamic = false ,
Metric mtype = Metric::12simple);

o The TYPE is coordinate numeric type.
o The selection names the arrays in dataset to use as coordinates.

o The dynamic enables Dataset : :append () callback to update k-d tree.

e Aunique_ptr needed, wrapped nanof lann objects are not copyable.

Y ——

KDTree: :MultiQuery

Bundle multiple k-d tree queries on a common Dataset.

void func(MultiQuery& mq) {
auto qptr = mq.get<double >({"x","y","2"});
std :: vector <double> p = {1,2,3};
auto knn = qptr->knn(3,p);
// ... use knn result in some way

auto& d = mq.dataset ()
Dataset tail = ;
d.append(d);

}

Dataset dorig = .3
MultiQuery mq(dorig);
func (mq) ;
o The orginal Dataset is only borrowed by the MultiQuery.
o That Dataset can be retrieved back from MultiQuery later.
e AMultiQuery: :get<T>(name_list) will return existing or a new

e es———— T yCipeniclowd T

Dataset I/O with TensorTools.h API

PointCloud: :Array +— ITensor
PointCloud: :Dataset +— ITensorSet

#include "WireCellAux/TensorTools.h"

ITensor :: pointer as_itensor (const PointCloud :: Array&);
PointCloud :: Array as_array(const ITensor :: pointer&, bool);
ITensorSet :: pointer as_itensorset(const PointCloud:: Dataset&);
PointCloud :: Dataset as_dataset(const ITensorSet:: pointer&, bool);

@ If bool is true, utilize zero-copy data sharing, requires programmer care. Default is false
@ The ITensor: :ident () mapped to Dataset: :metadata()["ident"].

@ ITensorSet::metadata()["_dataset_arrays"] holds list of Array names
known in the Dataset.

T

Related ongoing I/O work

Get round trip I/O working for:
o Frame +— “Frame file”
o Cluster «+— “Cluster file”

Wish to deprecate these “direct I/O” patterns and instead standardized on
intermediate Tensor representation.

@ Dataset «+— Tensor Set +— “Tensor file”
o Frame <+— Tensor Set +— “Tensor file”
o Cluster «+— Tensor Set «+— “Tensor file”

A WCT “tensor file” is JSON+Numpy files in Zip/Tar streams. Essentially follows
HDF5 schema. So, expect it easy to add:

@ Tensor Set +— HDF5

T

WIP: pipelines of heuristic functions

Essential idea: support a pipeline of functions operating on a point-cloud.

@ The point cloud must be mutable.

Avoid re-creating identical k-d trees.
Variety of possible pipelines as defined by configuration.

Each implement a “point cloud visitor” interface.

Defines a method accepting a non-const KDTree: :MultiQuery.

T

WIP: extending point-cloud to point-graph

Essential idea: use a “node” and an “edge” Dataset.
node Exactly a point-cloud Dataset.

edge A second Dataset with "tail" and "head" arrays holding
point indices in to the node dataset. May have additional arrays to

hold edge features.
Benefits:
o Leverage existing converters to Tensor Set representations and file I/O.

@ Easy to use alongside boost : : graph representations.

T

