
Wire-Cell Toolkit Point Cloud

Brett Viren

April 24, 2023

Brett Viren WCT Point Cloud April 24, 2023 1 / 24

Topics

Points and point data
Point cloud, point data array and dataset
k-d tree operations
Data representation conversions
WIP: extending point-cloud to point-graph

Brett Viren WCT Point Cloud April 24, 2023 2 / 24

Point

An abstract entity, no intrinsic meaning.

Brett Viren WCT Point Cloud April 24, 2023 3 / 24

Point data

x

y

z

q

id

We may associate information with a point.
shapes: scalar, vector, matrix, tensor
numeric types: integer or �oating point

I homotypic if non-scalar

Brett Viren WCT Point Cloud April 24, 2023 4 / 24

Data interpretation, eg coordinates

x

y

z

q

id

We may interpret speci�c point data in some way.
An ordered set of n coordinates may provide a
position in an n dimensional Cartesian space.
Interpretation are extrinsic to the point and
the associated data.

Brett Viren WCT Point Cloud April 24, 2023 5 / 24

Shared interpretations

qu

u

x

y

z

q
id

Di�erent interpretations of subsets of point data.
The “x” point-data interpreted as part of a 3D
position may also be used as part of a 2D
position (projected x-u wire view).
A charge, “qu” may be found with the
projected 2D position and then later used
along with 3D positions.

Brett Viren WCT Point Cloud April 24, 2023 6 / 24

Point cloud

PC: 0 1 2 3 4 5 6 7 8 9

An abstract, ordered collection of N points.
Well de�ned ordering of points (but may be arbitrary).
An extrinsic point index re�ects the ordering.

Brett Viren WCT Point Cloud April 24, 2023 7 / 24

Point-data array

PC: 0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Collect all of one type of point data for the points in a point cloud into an array.
The point-cloud index also identi�es associated point data in the array.
Array elements have common data type and shape.

I (here, scalar integers one larger than point index)
Brett Viren WCT Point Cloud April 24, 2023 8 / 24

Point-cloud dataset

PC: 0 1 2 3 4 5 6 7 8 9

PC

"id"

"x"

1 2 3 4 5 6 7 8 9 10

1.0 1.1 1.2 3.2 4.0 2.5 1.6 7.0 0.8 6.9

Associate multiple point-data arrays to a point cloud.
Each array is identi�ed by a “name” in the context of the dataset.
Heterogeneous type and shape across the arrays, but common length.

Brett Viren WCT Point Cloud April 24, 2023 9 / 24

WireCell::PointCloud

Array model of a point-data array

Dataset model of a point-cloud dataset

Brett Viren WCT Point Cloud April 24, 2023 10 / 24

PointCloud::Array

1 2 3 4 5 6 7 8 9 10

Provide type-erased array data wrapper.
I Required to form a heterotypic collection.

Read-only, zero-copy shared or read-write copy of user array.
Supports minimal but e�cient set of array operations.

I Essentially only: append(Array) which assures type/shape constraints.
Read-only, zero-copy and typed, full featured wrappers:

I span<T> a �at vector<T> like view of underlying array
I boost::multi_array<T,NDim> full featured multi-dimensional array

operations

Brett Viren WCT Point Cloud April 24, 2023 11 / 24

PointCloud::Dataset

PC

"id"

"x"

1 2 3 4 5 6 7 8 9 10

1.0 1.1 1.2 3.2 4.0 2.5 1.6 7.0 0.8 6.9

Access an Array by its associated name.
Assure array length constraints.
Implement append(Dataset).

I Assure completeness, shape, type constraints of appended tail dataset.
Call user-provided callback hooks on successful append().

I Needed for dynamic k-d tree support (comming up).
Retrieve collection of references to Array’s via list-of-names.

Brett Viren WCT Point Cloud April 24, 2023 12 / 24

WireCell::PointCloud code snippet

i n c l u d e " W i r e C e l l U t i l / Po in tC loud . h "
u s i n g namespace W i r e C e l l : : Po in tC loud ;

D a t a s e t d ;
/ / Add an i n t e g e r a r r a y named " one " o f shape (5 ,)
d . add (" one " , Array ({ 1 , 2 , 3 , 4 , 5 })) ;
/ / Add a doub le a r r a y named " two " o f shape (5 ,)
d . add (" two " , Array ({ 1 . 1 , 2 . 2 , 3 . 3 , 4 . 4 , 5 . 5 })) ;

au to s e l = d . s e l e c t i o n ({ " two " , " one " }) ;
c o n s t Array& one = s e l [1] ;
a s s e r t (s e l [0] . g e t () . num_elements () == 5) ;

c o n s t au to& one = d . g e t (" one ") ;

Many other ways to make Array and add them to Dataset.

Brett Viren WCT Point Cloud April 24, 2023 13 / 24

Array:: and Dataset::metadata()

u s i n g m e t a d a t a _ t = C o n f i g u r a t i o n ;

m e t a d a t a _ t& metadata () ;
c o n s t m e t a d a t a _ t& metadata () c o n s t ;

Type is WireCell::Configuration,
I aka JsonCPP’s Json::Value.

Merely carried and not directly utilized by Array/Dataset.
I Utilized in I/O related conversions (coming up).

Users are free to stash their own structured data.

Brett Viren WCT Point Cloud April 24, 2023 14 / 24

Point-cloud position queries

We may interpret certain arrays in a dataset as holding coordinate point data.
Each array represents a location in a given Cartesian dimension.

I eg "x" array of X-coordinates.
Any set of scalar and common numeric type arrays may provide coordinates.

Position queries
knn the k’th nearest neighbors to query position.

radius all point positions within some metric distance to a query position.
Results in two arrays:

index an array of point indices into the original dataset.
distance the metric distance between point and query positions.

Brett Viren WCT Point Cloud April 24, 2023 15 / 24

Metric distance

A distance between two positions in a space requires a metric.
L2 the usual, but squared Cartesian distance
L1 sum of steps, each strictly taken in one dimension

SO2 2D angular distance
SO3 3D angular distance

The query radius and returned distances are expressed in this metric.
eg, units are [length]2 for choice of the L2 metric.

Brett Viren WCT Point Cloud April 24, 2023 16 / 24

WireCell::KDTree for position queries

Uses a Dataset
Provides a thin wrapper around nanoflann

I Simpli�es and regularizes nanoflann API.
I Converts complex nanoflann templated types to option variables.

Common result set type for both knn and radius searches.

Brett Viren WCT Point Cloud April 24, 2023 17 / 24

WireCell::KDTree code snippet
i n c l u d e " W i r e C e l l U t i l / KDTree . h "
u s i n g namespace W i r e C e l l : : KDTree ;
u s i n g namespace W i r e C e l l : : Po in tC loud ;
vo id func () {

D a t a s e t d = . . . ;
s t d : : v e c t o r < double > query_pos = { 1 , 2 , 3 } ;

au to q p t r = query < double >(d , { " x " , " y " , " z " }) ;

s i z e _ t k = 3 ;
au to knn = qptr −>knn (k , query_pos) ;
c o n s t s i z e _ t nfound = knn . index . s i z e () ;
f o r (s i z e _ t i f o u n d = 0 ; i found <nfound ; ++ i f o u n d) {

c e r r << i f o u n d << " : " << " index = " << knn . index [i f o u n d]
<< " d i s t a n c e = " << knn . d i s t a n c e [i f o u n d] << " \ n " ;

}
doub le rad = 5 ∗ u n i t s : : cm ;
auto radn = qptr −> r a d i u s (rad ∗ rad , query_pos) ;
/ / use radn j u s t l i k e knn

Brett Viren WCT Point Cloud April 24, 2023 18 / 24

WireCell::KDTree::query<TYPE>()

For TYPE ∈ {int,float,double}
t emp la t e <typename Type >
s t d : : un ique_p t r <Query <TYPE>>
query (Po in tC loud : : D a t a s e t& d a t a s e t ,

c o n s t Po in tC loud : : n a m e _ l i s t _ t& s e l e c t i o n ,
b o o l dynamic = f a l s e ,
M e t r i c mtype = M e t r i c : : l 2 s i m p l e) ;

The TYPE is coordinate numeric type.
The selection names the arrays in dataset to use as coordinates.
The dynamic enables Dataset::append() callback to update k-d tree.
A unique_ptr needed, wrapped nanoflann objects are not copyable.

Brett Viren WCT Point Cloud April 24, 2023 19 / 24

KDTree::MultiQuery
Bundle multiple k-d tree queries on a common Dataset.
vo id func (Mul t iQuery& mq) {

au to q p t r = mq . get < double > ({ " x " , " y " , " z " }) ;
s t d : : v e c t o r < double > p = { 1 , 2 , 3 } ;
au to knn = qptr −>knn (3 , p) ;
/ / . . . use knn r e s u l t i n some way

auto& d = mq . d a t a s e t () ;
D a t a s e t t a i l = . . . ;
d . append (d) ;

}

D a t a s e t d o r i g = . . . ;
Mul t iQuery mq(d o r i g) ;
func (mq) ;

The orginal Dataset is only borrowed by the MultiQuery.
That Dataset can be retrieved back from MultiQuery later.
A MultiQuery::get<T>(name_list) will return existing or a new
k-d Query<T> object matching the listed array names.Brett Viren WCT Point Cloud April 24, 2023 20 / 24

Dataset I/O with TensorTools.h API

PointCloud::Array←→ ITensor
PointCloud::Dataset←→ ITensorSet

i n c l u d e " WireCel lAux / TensorToo l s . h "

I T e n s o r : : p o i n t e r a s _ i t e n s o r (c o n s t Po in tC loud : : Array &) ;
Po in tC loud : : Array a s _ a r r a y (c o n s t I T e n s o r : : p o i n t e r & , b o o l) ;
I T e n s o r S e t : : p o i n t e r a s _ i t e n s o r s e t (c o n s t Po i n tC loud : : D a t a s e t &) ;
Po in tC loud : : D a t a s e t a s _ d a t a s e t (c o n s t I T e n s o r S e t : : p o i n t e r & , b o o l) ;

If bool is true, utilize zero-copy data sharing, requires programmer care. Default is false
The ITensor::ident() mapped to Dataset::metadata()["ident"].
ITensorSet::metadata()["_dataset_arrays"] holds list of Array names
known in the Dataset.

Brett Viren WCT Point Cloud April 24, 2023 21 / 24

Related ongoing I/O work

Get round trip I/O working for:
Frame←→ “Frame �le”
Cluster←→ “Cluster �le”

Wish to deprecate these “direct I/O” patterns and instead standardized on
intermediate Tensor representation.

Dataset←→ Tensor Set←→ “Tensor �le”
Frame←→ Tensor Set←→ “Tensor �le”
Cluster←→ Tensor Set←→ “Tensor �le”

A WCT “tensor �le” is JSON+Numpy �les in Zip/Tar streams. Essentially follows
HDF5 schema. So, expect it easy to add:

Tensor Set←→ HDF5

Brett Viren WCT Point Cloud April 24, 2023 22 / 24

WIP: pipelines of heuristic functions

Essential idea: support a pipeline of functions operating on a point-cloud.
The point cloud must be mutable.
Avoid re-creating identical k-d trees.
Variety of possible pipelines as de�ned by con�guration.
Each implement a “point cloud visitor” interface.
De�nes a method accepting a non-const KDTree::MultiQuery.

Brett Viren WCT Point Cloud April 24, 2023 23 / 24

WIP: extending point-cloud to point-graph

Essential idea: use a “node” and an “edge” Dataset.
node Exactly a point-cloud Dataset.
edge A second Dataset with "tail" and "head" arrays holding

point indices in to the node dataset. May have additional arrays to
hold edge features.

Bene�ts:
Leverage existing converters to Tensor Set representations and �le I/O.
Easy to use alongside boost::graph representations.

Brett Viren WCT Point Cloud April 24, 2023 24 / 24

