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Topics

o Present formalism for noise modeling and generation.
@ Understand spectral interpolation and normalization.

@ Describe WCT code implementations with examples and future work.

Note, I follow the notation and formalism of:

@ Mathematics Of The Discrete Fourier Transform
» https://ccrma.stanford.edu/~jos/mdft

@ Spectral Audio Signal Processing
» https://ccrma.stanford.edu/~jos/sasp
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Discrete Fourier Transform (DFT)

Frequency spectrum (fwd) Time/interval series (inv)
1 _ A
wg = 271'%]{:, fs = T xn = x(n) = z(t =nT)
N-1 - 1 N-1
X, = X(wp) £ z(n)e "N T, = — Xeiszn
k= X(wr) ; (n) J "= nz:;) K |

enkel0,N—-1], z, eR, X; €C

@ Asymmetric normalization convention: % in the inv-DFT.

e Sampling time/frequency: 7'/ fs (and N) determines binning,
Nyquist: f,, = % largest resolved frequency,

Rayleigh: f, = f—A? smallest resolved frequency.
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Useful squared quantities

Periodogram - normalized power spectrum

1 2
P, =—|X k N-—-1

Parseval’s Theorem aka Rayleigh Energy Theorem

N-1 ;| N-1 N-1
E=3lem)’ = N MIXlP=) B
n=0 k=0 k=0

Mean-squared (ie, RMS?) aka normalized energy

N-1

1 E

Uzms < N Z |:L‘n|2 = N
n=0
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Zero padding in time / interpolation in frequency

T, — 2, = |20, ..., *N_1,0,...,0], n € [0, N — 1], N > N
X| = DFTy(z'), k € [0, N’ — 1]

N
P, — P, =|X.]?/N', E = E' =E, 0rms — Ohps = ~Trms

ms

e X are trigonometrically interpolated from X}, but not scaled.

o Energy is constant, but spread over more elements.

o Actually, we want more F and keep P and 0,5 constant.
» Can scale up X’ by /N’/N to remove bias.

o Same scaling needed after direct interpolation in frequency.
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Averaging

Given a set of waveforms {z(™}, m € [0, M — 1], X,gm) = DFTy(2(™) we may
form simple averages of spectral amplitude and power,

=

1 M-1
(A= I
m=0
M—

1 m
(IXul?) £ - S (P

m=0
Best to choose M ~ N in order to balance spectral resolution and statistical
stability.
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Frequency bin noise distribution

We model X}, € C as:
o Uniformly distributed phase: ZX}, ~ U(0, 27)
@ Rayleigh distributed amplitude: | Xj| ~ R(o%)
» Note: 7 ~ R(c), u ~U(0,1), r = 0/—2Inu
e Or equivalently via normal distributions:
» real(Xy) ~ N(0,0%), imag(Xy) ~ N (0, o)
The parameter oy, is the mode (not mean) of the Rayleigh distribution.
o It is key to how we model and generate noise.

o Either of the first two moments estimate oy;:

T
(el =~ o (160) = 202
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White noise special case

o Flat mean spectrum: oy, £ o3, V k with,

2

B =Y

e
Il

0

(]Xk\2> =20, = No?

@ Autocorrelation related to o, at lag I = 0 and zero o.w.

(xxz)(l) = No?

-0(1)

(Really, these two state the same thing, one in time and one in frequency)
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Round trip validation

/ /
(raw waves —)spectrum — waves — spectrum’ — waves

Sanity check waveforms.

o Assure distribution of E and 0, in time are as expected.

@ Assure F is same in time and frequency.

o Assure oy, scales correctly when zero padding.

o Generate x,, from spectra, collect to estimate and recover spectra.

Noise types:
@ Flat (white) spectrum and directly generate Gaussian waveforms, both with o,.,,,s = 1.

@ Fictional, shaped spectrum similar to real detector noise, tune to be near o,.,s = 1.
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Validation test

/ /
(raw waves —)spectrum — waves — spectrum’ — waves

$ ./wcb --target=test_noisetools

$ ./build/aux/test _noisetools

$ wirecell-test plot -n noisetools \
build/aux/test noisetools.tar \
aux/docs/test_noisetools.pdf

Excerpts from that PDF will are shown next.

@ Same set of plots for spectrum € (white, gauss, shape).

> “gauss” starts from (“raw”) waves, the rest start from a spectrum
@ Two “rounds” (labeled r1, r2) of spectrum — waves are performed.

@ Two choices for sizes:
» Cyclic (c1) have {,,} size N(4¢) = N(/ft) = 256,
» Acyclic (c0) have N(@Y) = 256 which are zero-padded to use N/f*) = 512,



Flat (“white”) spectrum

white waves c0 rl RMSes of 256 waves of 256 ticks

white waves c0 rl energies of 256 waves of 256 ticks
—— mean 1.00

white waves c0 r1 waves (5 of 256)

—— mean 255.51

Generated from an exactly flat spectrum of oy, = g, = %, (0rms = 1.0)

o Sane looking waves, recover expected energy and RMS

@ Not shown but similar results for:
Flat c1: cyclic FFT (wrap-around) and r2: second round.
Directly generating Gaussian A/ (0, 1) waves (c0,c1)®(r1,r2). )
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Flat (“white”) o, (| Xi]), (| Xx|?)

white sig white lin white sqr

N Ly TN — c1n (el
— anpss
10 — anpsel
000 025 050 075 100 125 150 175 200 000 035 050 075 100 135 130 175 200 000 035 050 075 100 125 150 175 200
freauency (per Foyqin) frequency (per Fryqus) freuency (per Fyqus)

Lines mark expected mean given white noise g,,s = 1.
“sig” o} normalized to remove interpolation bias.
“lin” (| X}|) with interpolation bias.
“sqr” (| Xy|?) also with bias, divide by N = 256 to get periodogram.
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Flat (“white”) autocorrelation

white biased autocorrelation white unbiased sample autocorrelation (half) white unbiased sample autocorrelation
— 0 1 N=512 ac(0}=255.5 10 —c0 11 N=512 ac(0]=1.0 10 — 0 1 N=512 ac(0}=1.0
250 —— 02 N=512 acl0]=256.1 —— 012 N=512acl0]=10 — 012 N=512 acl0]=1.0
— €111 N=256 ac(0]=2613 — lr1N=256acl0]=10 08 — €111 N=256 acl0]=10
— 112 N=256 ac[0]=260.4 — 112 N=256 acl01=1.0 — 12 N=256 acl0l=1.0
200 o8
06
150 05 04
02
100 04 N
00
50 02 02
04
ool
0 o0 WA
06
I 100 200 300 00 500 0 50 100 150 200 250 3 100 200 300 %0 500
lag lag Iag

Each shows cyclic/acyclic and first and second rounds.
@ Indeed, autocorrelation for [ = 0 works out correctly (eg bac[0] ~ No?2, ).

@ The instability at high lag [ is expected in the SAC due to statistical instability dividied
by a small number for normalization.
Note: first SAC plot zoomed to half-range, second if full range.
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Fictional spectra

Use analytic Rayleigh distribution as function of frequency to approximate the
shape of real noise spectrum and tune normalization so g,y,s ~ 1.0.

shape sig

e “true” emulates a “hand digitized”,
irregularly-sampled spectrum.

c0 rl [true]
c0rl [512]
c0r2[512]
c1rl [true]
clrl[256]
c1r2[256]

» Random points chosen uniquely
for ¢0 (acyclic) and ¢1 (cyclic)
@ Use new irrterp irregular
interpolation to get regular sampled

spectrum.
5|
@ Each round of each pair (c0/c1) N S—
recovers its “true” oy, spectra. 000 035 050 075 100 125 150 175 2.0
frequency (per Fayquist)
As with white noise, “sig” is the unbiased oy, spectrum. J




Fictional waves

shape waves c1 r2 waves (5 of 256) shape waves c1 r2 energies of 256 waves of 256 ticks shape waves c1 r2 RMSes of 256 waves of 256 ticks
—— mean1.06
4
175
3
150
2
125
1
100
o
75
-1
50
-2
25
-3
0.0

o All (c0, c1) ® (r1, r2) give statistically similar energies and RMS’s.
@ Again, spectrum was tuned so 0, = 1, expect real world spectra to differ. J
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Fictional oy, (| X&|), (| X&)

shape sig shape lin shape sar
35 — corl [true] 30 — 0 (512) 1200 — ons12)
—— c0r1[512] —— c0r2(512] —— c0r2[512]
0 — wn12 — anpsel — anpsel
111 [true) 25 — clr2(256] 1000 — c1r2(256]
c1r 2561
% c1r2(256)
20 800
20
15 600
15
10 400
10
s 5 200
3 0 o
000 025 050 075 100 125 150 175 200 000 025 050 075 100 135 130 175 200 000 035 050 075 100 125 150 175 200
frequency (per Foyquist) frequency (per Fayquise) frequency (per Fryquist)

Again, 0}, has interpolation bias removed and (| X|), (| X|?) do not. )




Fictional autocorrelation

shape biased autocorrelation

— O 11 N=512 ac[0}=270.2
—— <02 N=512 ac[0]=270.7

—— 171 N=256 ac[0]=290.2

— 112 N=256 acl0]=287.6

o 100 200 300 400 500
lag

@ As with white noise, show BAC and SAC (half and full range).

shape unbiased sample autocorrelation (half)

—c0 11 N=512 ac[0}=11
—— c0 2 N=512 ac[0]=1.1
—— €11 N=256 ac[0]=1.1
— <12 N=256 acl0]=1.1

B

50 100 150 200 250

@ Even BAC has large deviation at high lag [ ~ N/2.

shape unbiased sample autocorrelation

O 11 N=512 ac(0}=11
—— <02 N=512 ac[0]=1.1
—— 171 N=256 ac(0]=1.1
— clr2N=256 ac(0l=11

@ How to associate the anti-correlation at small lag with spectral shape?

@ Recover expected o

2
rms

at/ = 0.

June 24, 2022
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Collecting noise

NoiseTools: :Collector
@ User decides nsamples,

acyclic choice is #include "WireCellAux/NoiseTools.h"
N ft) = glloga(2xN)] using namespace WireCell :: Aux:: NoiseTools;
@ Autocorrelations are // Eg, traces from IFrame
optional as they require std :: vector <real vector t> waves = 3
extra DFTs. size_t nticks = waves[0].size ();
o Add the {x%det)} size_t nsamples = ...; // user defined

waveforms. bool do_acs = true; // off by default

@ Retrieve final stats, Collector nc(dft, nsamples, do_acs);

available are: for (const auto& wave : waves) {
sigmas(), amplitude(), nc.add (wave.begin (), wave.end());
linear(), square(), }

rms(), periodogram(),

Rayleigh si k t
bac(), sac(), psd() // Rayleigh sigma k spectrum

auto sigmas = nc.sigmas();




Generating noise

Use N/ or R(U) /U forms NoiseTools: :Generator
° .
S;E:;:eo?ifrzsélgggiiﬁzled #include "WireCellAux/RandTools.h"
randoms. using namespace WireCell :: Aux:: randTools;

@ Create appropriate, equivalent

// Also "Recycled" and also "Normals"
Generator{N,U}

Fresh fu(Uniforms:: make_fresh(rng));
To make waves:
® wet " 6 // Also GeneratorN with Normals
ge O Spectrum irom .
Collector or file. GeneratorU ng(dft, fu);

@ Call spec () to get fluctuated

// Flucuated sigma spectrum, feed to invDFT ()
o}, spectrum and feed to inv-DFT.

// auto fsigmas = ng.spec(sigmas);
@ Callwave() to include the // Or directly , a fresh noise waveform
inv-DFT to make a wave directly. auto wave = ng.wave(sigmas);

Get oy, spectrum from NoiseTools: :Collector or load from file, but don’t forget to convert from

amplitude (linear or square) to o}, = \/gﬂXk Iy = V{1 Xk|?)/2.




New WCT Components

IncoherentAddNoise

@ Takes one or more IChannelSpectrum “models”.

@ Replaces AddNoise but leaves that name as an alias so old configuration still works.

@ UsesaNoiseTools: :Generator.

@ Handles conversion from (| Xy |) — o}, (ie IChannelSpectrum is left as-is, for now?).
CoherentAddNoise

@ Almost identical to above but generated waveform is added to a group of channels. Could even combine the
two if we configure groups-of-single-channel....

@ Takes one or more IGroupSpectrum models: maps spectrum to group and group to channels.
GroupNoiseModel

@ Happens to implement both IChannelSpectrumand IGroupSpectrum.

@ For either, reads same file format.

@ Still TBD: file and code need to specify normalization information.
EmpiricalNoiseModel

@ Left as-is for now, but perhaps best to unify it and GroupNoiseModel.

> Atleast, GroupNoiseModel should/will use a similar file format.
»  GroupNoiseModel does not support dynamic changes to electronics response.
» OTOH, EmpiricalNoiseModel’s wire-length binning could be handled more generically as a channel “group”.



Future WCT Components?

I would like WCT to provide a “standard” method for experiments to produce
“proper” WCT noise files. This would require two new components;

NoiseFinder NoiseWriter
@ An IFrameFilter @ An ITerminal and IFrameSink
@ Accept ADC waveforms o Configure with a channel-group map
@ Convert to Voltage @ Maintain per group
@ Discard signal-like waves NoiseTools::Collector’s
eg based on mode subtraction @ Marshal input to associated channel
and outlier-detection group’s Collector
@ Output IFrame with survivors ) @ On terminate () write WCT noise file. )

Likely insert a “frame tap” save out the intermediate noise frames for validating. J




FIN




(backups)




Signal autocorrelation function of “lag” [

Biased autocorrelation (BAC)

(% x) éZm x(m +1)
l

DFTy(z xz) = | X} |2

Unbiased “sample” autocorrelation (SAC)

P(l) & (3:\-);1‘)|§|l for [I| < N — 1 and zero otherwise.
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Aside: zero-padding of time sequence

Eg, want FFT for fast autocorrelation

) = Nl_ JinuDET([DFT(2)]?)

Zero-padding: FFT requires 27, acyclic requires 2NV

z(n) = z.p(n) = [£(0),...,z(N — 1),0, ..., 0]
n € [0,2NUF) _ 7], N9 = gllogz(2N)]

@ N as product of small prime factors may win when 2”7 > N.

Zero-padding in time is interpolation in frequency
@ Results in “trigonometric” type interpolation.

o Normalization unchanged but inv-DFT has %

Will need to take this into considering in some cases.




Aside: white noise is fully uncorrelated

Sampled autocorrelation

o This becomes an equality as N — oo.

e Will use #(0) ~ o to validate noise code.




Noise modeling and generating procedure

Q Select a set of detected waveforms rich in noise (no signal).
» Convert from units of ADC to Volts,
» = gl (), n € [0, N(det) — 1],

@ Partition full set into subsets of “like” waveforms,
> eg, coherent groups, similar wire lengths.

@ Collect fwd-DFT statistics averaged over each subset:

> (| Xx|) spectral amplitude,
» (| Xk|?) spectral power,
» kelo,NUID _1]

Q Sample and fluctuate (| X}|) and apply inv-DFT to produce simulated noise
waveforms,

» = (5™ (n), n € [0, NG —1).
Must take care of the fact N(det) £ N (/1) £ N (sim)y



Welch’s (aka periodogram) method for estimating spectra

Simple average over M DFTs of waveforms of size N

(Xe) 2 L 5M 1 x™) ke [0,N — 1] and ete for (| X |?)

Chosing M and N
o Larger N gives better spectral resolution,
o Larger M gives better statistical stability,

@ Choose M =~ N gives balanced optimization.

Special case for white noise

May repartition the waveforms to achieve balanced optimization
N =M =+vMxN

Noise waveforms from non-flat spectrum must be kept whole.




Generating waveforms

Average Rayleigh mode spectrum

2
or = =(|Xl), k€ [0, NV 1]

Sample from Rayleigh R and uniform ¢/ distributions

| Xk ~ R(0), £(Xk) ~U(0,2)

Or, real and imaginary parts from Gaussian N\

real(Xx) ~ N(0,0), imag(Xx) ~ N(0,0)

Generate waveform from the complex, X}’s

inDFTo([Xo, .., X0 _1]); 1 € [0, N — 1] — 205 ()

@ Need only generate k € [0, N/ /2] and apply Hermitian-symmetry.



Ndet) £ N(FFt) £ N (sim)

Reminder of Parseval’s theorem:

N-1 1 N-1
B=Y fnf =L Y x)
n=0 k=0

When we interpolate in frequency, say N — N’ > N
e Subsequent inv-DFT makes more time samples, thus more energy.
o Interpolation holds normalization constant.
@ But, the inv-DFT divides by 1/N’, reducing energy.

o To conserve energy, we must interpolate and scale:

/ N/ U

Equivalently, this preserves RMS in time.

Brett Viren June 24, 2022
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Steps to prepare mean spectral amplitude

© Zero-pad time sequence N(9¢t) — N (/1)
@ Apply fwd-DFT to form mean spectral amplitude contribution,

@ Scale amplitude by 4/ %-
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Steps to generation of waveforms

O Interpolate mean amplitude N/t — N/(/ft) > N(sim)

@ Scale amplitude by 4/ % (and by \/2/m, convert u — o),
@ Apply inv-DFT to get time series,

© Truncate time series to N'(/ft) — N(sim),



Integral Downsampling

In time, sum sequential L samples to get new size M,

m+L—1
Tn = Xy = Y Tp, mE[0,M—1], N=LM

n=m

In frequency, produces aliasing (sum L jumps of size M)

L1
O = O (m+IM)> mE[O,M—l]
l
Reduces both N and the Nyquist frequency by 1/L.

The sum of size L means same energy spread over factor L fewer samples so must
normalize linear spectra by /1/L.

I
=)



Non-integral downsampling

N
NS NA2LM, L=[—
- L L=T137]

Then interpolate spectrum to N/, with \/N’/N scaling and apply integral
downsampling for total saling /N’/NL



Reduce sample period with fixed N

T—T =rT,fn— fl,=fa/r, 7 <1

This interpolation in time is equivalent to extrapolating the spectrum in frequency.
Extrapolation requires some model.

e constant extrapolation from spectral value at f,, is reasonable when the
spectrum there is dominated by white noise.

@ zero-pad the spectrum above f,, may be applicable when the original signals
are nominally zero at f;, but statistical fluctuation on the mean spectrum failed
to achieve exactly zero.

> (Maybe a sign that the hardware antialiasing filters and/or original sampling rate
were not well chosen?)



General resampling
Have

o1n, n€[0,Ny — 1], £ = 1Ny, £ = 1721y
Want:

Oom, n € [0, Ny — 1], £ = 1/No Ty, £ = 1/2T
Relative sizes of N, M and T T’ give potentially 4 combinations.

Interpolate N1 — Nj = N2 Q) S0 flr — f'5 () — f2r (ie, same binning)

o gain \/N{/N; normahzatlon
Calculate L = | fl(n) / f;n)] and extrapolate N| — N{' = LNs.

@ gain \/]W if zero pad, but no gain if extrapolate non-zero constant.
If fl(”) < f2(n) return extrapolated spectrum (7).
Else, perform aliasing with L on N7'.

e gain /1/L



General resampling with larger period.

Ty > T, Ry = To/Th > 1, fi < f

. A A Ny - . (n)
The input bin index n’ = 5 7oy is approximately at f5.

"
Interpolate so n’ — n” = % 4 %, N1 — N = NaRoy

If N/ > N3 we may alias by pretending same periods.



